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Abstract Obtaining a sufficient sampling of conformational space is a common prob-
lem in molecular simulation. We present the implementation of an umbrella-like adap-
tive sampling approach based on function-based meshless discretization of conforma-
tional space that is compatible with state of the art molecular dynamics code and that
integrates an eigenvector-based clustering approach for conformational analysis and
the computation of inter-conformational transition rates. The approach is applied to
three example systems, namely n-pentane, alanine dipeptide, and a small synthetic
host-guest system, the latter two including explicitly modeled solvent.

Keywords Conformational analysis · Meshfree methods · Molecular simulation

1 Introduction

The dynamics of molecular systems exhibits a distinct metastable character: Molecular
systems tend to remain within an almost invariant subset of conformational space for
a long time—long in relation to the step size of the numerical integration, which for
atomistic simulations is in the order of one or two femtoseconds—while transitions
between different almost invariant subsets (i.e. conformational changes) are rarely
observed events. This characteristic is due to the rough potential energy landscape
inherent to most molecular systems. Basins of low potential energy, grouped around
local minima, are separated by high energy barriers, corresponding to conformational
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changes , or changes from unbound to bound state. This complicates the sampling of
conformational space, as molecular dynamics (MD) trajectories tend to generate states
from within the basin of one local minimum for a long time, while transitions between
different local minima are achieved only very seldom, or not at all. This effect, often
denoted as trapping, can lead to incomplete coverage of conformational space, and
thus to insufficient statistics. It is particularly severe with regard to the sampling of
transient regions of conformational space, e.g. in the study of ligand-receptor binding
processes, as the dynamics of the system will try to avoid the energetically unfavorable
(but most interesting) transition states.

While, as of yet, thermostated long-time MD remains the predominant tool in
the molecular simulation community, several successful strategies for overcoming
(or rather lessening) the sampling problem have been developed, including umbrella
sampling [1], essential dynamics [2] and replica exchange [3]. An excellent implemen-
tation of various enhanced sampling schemes is available in terms of the PLUMED
plug-in [4] that is compatible with various popular MD packages.

In this article, we present an enhanced version of the ZIBgridfree sampling algo-
rithm [5], which is inspired by the umbrella sampling approach. ZIBgridfree uses
an adaptive refinement strategy in order to enable efficient and thorough sampling
even in transient regions of conformational space. The main feature of ZIBgridfree
as presented here is that it combines an efficient importance sampling scheme with
a comprehensive and visual framework for conformational analysis w.r.t. both single
molecules and binding processes.

In the initial step of the algorithm, conformational space is partitioned into subsets.
Each subset is sampled independently toward convergence of the correct local dis-
tribution. More precisely, instead of computing only one trajectory for exploring the
potential energy landscape, we compute short trajectories which are confined to a sub-
set of the conformation space by restraints. These subsets then are defined by a partition
of unity on the conformation space. If convergence fails (e.g. when the sampling keeps
on “jumping” between two local minima), a refinement of the partitioning is triggered,
followed by additional sampling. In the subsequent step, each local sampling will be
weighted such that the overall histogram yields the global Boltzmann distribution, so
that the identification of conformations is reduced to a clustering problem based on the
eigenstates of the overlap matrix of the partitioning. Finally, conformational weights
and inter-conformational transition probabilities can be determined. The extended ver-
sion of ZIBgridfree presented here broadens the scope of this sampling scheme by
combining it with a standard MD software package so as to give access to the most
up-to-date molecular force fields and solvent models.

2 Theory and implementation

2.1 Conformation dynamics

As partitioning methods based on meshes or grids suffer from the “curse of dimen-
sionality”, ZIBgridfree implements a meshless, function-based partitioning approach.
This is motivated by the concept of conformation dynamics [6,7], where conforma-
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tions of a molecular system are defined in terms of soft-characteristic membership
functions, rather than classical sets in position space (below denoted as �). We are
interested in a soft partitioning of the position space, i.e. we want to have a set of
functions χ1, . . . , χnc : � → [0, 1] such that

nC∑

i=1

χi (q) = 1, (1)

holds for all q ∈ �. One can regard χi as a probability distribution. For a set of
position states we say that they are distributed according χi when for each collection
of conformations A we find

∫
A

χi (q)
w̃i

ρ(q) dq percent of position states from the set in
a conformation from A, with the corresponding thermodynamical weights

w̃i :=
∫

�

χi (q) ρ(q) dq. (2)

This means the position states are distributed according to the partial density
function ρ̃i :

ρ̃i = χi (q)ρ(q)

w̃i
. (3)

Note that for the special case χ1, . . . , χnc : � → {0, 1} our approach reduces to the
well known Markov State Model [8–10]. In this case w̃i is the probability to be in set
Ai := {q ∈ � | χi (q) = 1} and the transition matrix T for some fixed time step τ is
defined such that Ti j denotes the probability to move from set Ai to set A j in time τ . In
general w̃i denotes the probability that the molecule will be found in the conformation
represented by χi and the transition matrix T for some time step τ is given in the
following way: If we have a set of position states distributed according χi then after a
time step τ they will be distributed according

∑n
k=1 χk Tik . One new property of T is

that the entries do not need to be positive. A partition into metastable conformation is
given if we find a soft partitioning such that each distribution χi represents a metastable
conformation, i.e. Tii ≈ 1 for i = 1, . . . , nc. In the following we show how one can
obtain such a soft partitioning in metastable conformations and conclude with three
examples where we have approximated w̃i for each. For one example we have also
approximated the transitions matrix.

To find χ1, . . . , χnC we start off with a function basis φ1, . . . , φs : � → [0, 1],
where the initial number of basis functions s should be chosen larger than the antic-
ipated number of conformations nc. The function basis is chosen such that is has the
same properties as the membership functions χ1, . . . , χnC , i.e. partition of unity (cp.
Eq. 1). Therefore, each conformation membership function χ j can be constructed
from a convex combination of the basis functions φi [11]:

χ j =
s∑

i=1

χdisc(i, j)φi , j = 1, . . . , nC , (4)
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where χdisc is a row-stochastic matrix containing the linear combination factors. Anal-
ogous to ρ̃i and w̃i in Eqs. 3 and 2, each of the basis function is associated with a partial
density ρi and a thermodynamic weight wi . In order to calculate a set of points dis-
tributed according φi one can simulate a trajectory according to the modified potential
energy function Ũi as [11]

Ũi (q) = U (q) + Ûi (q) = U (q) − 1

β
ln (φi (q)). (5)

This fact will come in handy for calculating the corresponding wi and the subsequent
cluster analysis which aims at identifying both the correct number of clusters nC , as
well as the matrix χdisc of linear combination factors, from which we obtain the set
of membership functions χ j by applying Eq. 4.

As a precondition for the partitioning discussed above, a rough scheme of the
relevant position space has to be given. This can be delivered in terms of a long-
time MD trajectory (possibly using elevated temperature for improved coverage of
position space), a targeted MD or pulling trajectory, the output of certain tools for
exploring conformational space (e.g. CONCOORD [12] for protein structures) or even
by manually preparing a sequence of geometries. From this presampling is selected a
set of nodes {n1, . . . , ns} ∈ � to each of which is attached a radial basis function Wi

given by

Wi (q) = exp (−α δ2(q, ni )), i = 1, . . . , s, (6)

where α is a shape parameter, and δ2 a distance measure to be specified in the next
section. As the basis functions Wi do not satisfy Equation 1, we construct a partition
of unity with basis functions φi by following Shepard’s approach [13]:

φi := Wi
s∑

j=1
W j

, i = 1, . . . , s. (7)

The basis functions φi take on their maximum at the defining node ni , and decrease
exponentially as the distance δ2 of a state q to ni increases. As a consequence, the
difference between Ũi (Eq. 5) and U is minimal within the state ni , and increases
exponentially with the distance to ni . This ensures thorough sampling in the area
belonging to basis function φi , as the sampling process is restrained from wandering
off into a lower energy basin. The shape parameter α is chosen in dependence on
the number of nodes s and the mean node distance θ , and defines the degree of
separation of the meshless discretization. For α → ∞, the discretization converges
to a Voronoi tessellation, i.e. the soft partitioning degenerates into a hard partitioning
without overlaps between the basis functions.

In practice, the sampling of the basis functions φi is run in parallel, as each Ũi can
be evaluated at every position q ∈ � independently of all Ũ j with j �= i . Depending
on the available resources, one can either sample several basis functions in parallel,
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evaluate the potential Ũi in parallel (which in turn accelerates the sampling of the
associated basis function), or combine both approaches.

2.2 Internal coordinates

ZIBgridfree uses internal coordinates (either torsion angles and/or distances) as col-
lective variables in order to define the conformation of the system under observation.
Prior to picking a set of nodes for discretization, a set of nK internal coordinates
has to be specified by the user. The distance δ2(q, ni ) between state q and node ni

(Eq. 6) is measured in the space of internal coordinates. Therefore, the outcome of
the discretization is directly related to the choice of internal coordinates. Deciding
on a meaningful set of internal coordinates is not always trivial. For conformational
analysis of small molecules, picking all rotatable torsion angles is an obvious choice,
whereas for peptides or proteins, picking only backbone torsion angles is practical.
For complexes of multiple molecules, the set of torsion angles has to be complemented
by a set of distances in order to describe the molecules’ relative positioning to each
other.

Whereas angular internal coordinates can only take on values between −π and
+π , distance (or linear) coordinates can in principle take on any positive value. This
leads to problems whenever linear coordinates with a large spread or a large absolute
value are overly dominant, as other internal coordinates with more subtle changes are
rendered irrelevant when the distance function δ2 is evaluated. In order to tackle this
problem, linear coordinates can be weighted and normalized automatically by calling
zgf_create_pool with option ‘–balance-linears’.

Let k be a linear coordinate that corresponds to the Euclidean distance between
two particles in the system under observation. The weight of this coordinate is then
determined as follows:

coord_weight(k) = coord_weight(k)initial√
2 ∗ var(k)

, (8)

where coord_weight(k)ini tial is one, unless specified differently by the user. This
means that coordinates with a high spread are downgraded by dividing the initial
weight by the full width at half maximum. Furthermore, an offset for k is applied by
subtracting its mean value in order to compensate for high absolute values. This leads
to the following weighting formula:

kbalanced = coord_weight(k) · (k − offset(k))

= coord_weight(k) · (k − (offset(k)initial + mean(k))), (9)

whereoffset(k)ini tial is zero, unless specified differently by the user. This approach
realizes an equal weighting of all internal coordinates involved. Nonetheless, certain
applications might call for biased weighting of the internal coordinates, e.g. when the
distance between ligand and receptor (defined by linear internal coordinates) is to be
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stressed in comparison to more subtle conformational changes in the ligand molecule
(defined by torsion angle internal coordinates).

2.3 Implementing the potential modification

Sampling the ZIBgridfree basis function φi requires a modification of the potential
function U (q) (Eq. 5). Our aim was to change the algorithm such that it can be run
with standard force fields and unmodified molecular dynamics (MD) packages such
as GROMACS[14]. Treating the MD code as a black box has several advantages: The
user can use readily available software (pre-compiled for many Linux distributions
and pre-installed on most computing clusters), and plug in new versions as they are
released. Full flexibility regarding the choice of force field and other simulation para-
meters is sustained. Furthermore, internal changes to the highly optimized MD code,
possibly having a negative impact on the simulation performance, are evaded.

Adapting ZIBgridfree to a standard MD package is a two-step procedure. First,
for each selected node ni , the nK -dimensional φi function is projected on a single
dimension by coordinate-wise evaluation: Instead of considering the joint distance
δ2(q, ni ) (involving all internal coordinates) we now exclusively consider the distance
regarding coordinate k:

φik (q) := exp (−α δ2
k (q, ni ))∑s

j=1 exp (−α δ2
k (q, n j ))

, k = 1, . . . , nK . (10)

The above expression yields the membership of state q with respect to coordi-
nate k regarding basis function φi . The one-dimensional penalty potential acting on
coordinate k of state q can simply be obtained as:

Ûik (q) = − 1

β
ln (φik (q)). (11)

Finally, in order to approximate Ûi , for every internal coordinate k, a generic cubic
restraint potential (as available in many common MD packages) is fitted to the penalty
potential Ûik and added to the force field representing the unmodified potential U .
We implemented this approach for the GROMACS MD package, where restraint
potentials of the form

Ures(�
′) =

{
1
2 kres

(
�′ − �

)2
, for �′ > �

0, for �′ ≤ �
(12)

are readily available (given here for a torsion angle restraint on torsion angle
�′ = (�0−�) mod 2π , with rest position�0 and unrestrained region�, analogous
for distance restraints). The concept of fitting restraint potentials to the coordinate-wise
projected basis function penalty potentials of ZIBgridfree is depicted in Fig. 1.

The imperfect approximation of multi-dimensional basis functions by harmonic
restraints introduces a certain error, as sampling points may be generated from areas
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Fig. 1 Sampling of a torsion angle distribution (gray histogram) with ZIBgridfree. The sampling is forced
to stay within the area of an exemplary basis function (dashed gray line) by its penalty potential (dashed
black line). For use with GROMACS, the penalty potential is approximated by a harmonic restraint potential
(solid black line). Due to the approximation error, the sampling is not sufficiently limited to the area covered
by its basis function (left). After reweighting the sampling points with regard to the their basis function
(right), the approximation error is removed

of � that are not covered by the basis function in question. This is especially true for
boundary regions, where several basis functions are overlapping. This approximation
error can be removed by giving each sampling point q a weight frame_weighti (q)

with respect to basis function φi :

frame_weighti (q) = φi (q)

exp(−β · Ures(q))
. (13)

The effect of reweighting on the sampling distribution is depicted in Fig. 1. Cal-
culating the sampling point weights is inexpensive in terms of computation time.
Subsequently, when checking for convergence of the sampling, or when calculating
observables of any kind, only the reweighted distribution is considered.

2.4 Adaptive refinement of the partitioning

In order to ascertain a sufficient sampling of the partial densities ρi , ZIBgridfree
pursues an adaptive refinement approach. After a certain number of simulation steps,
convergence of the sampling is tested by evaluating the variance-based Gelman-Rubin
convergence criterion [15]. If the convergence test fails, the sampling will be extended
by n simulation steps (followed by another convergence test) for a maximum of m
times (where n and m are user-defined settings). If convergence has not been achieved
after m extensions of the original sampling length, a refinement of the partitioning in
the area of the affected basis function is triggered. By default, two children nodes ni1

and ni2 are introduced, whereas the original parent ni is removed from the partitioning,
along with its basis function φi . This principle is illustrated in Fig. 2.

Removal and addition of nodes have an impact on the overall partitioning, as with
the number of nodes s, the mean node distance θ is bound to change. Hence, the shape
parameter α (Eq. 6) is recalculated following each refinement step. With proceeding
refinement and increasing s, α will become larger, which in turn leads to a higher
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Fig. 2 The sampling of basis function ‘1’ (associated with a node at −68◦) has come upon a second
minimum in the region around −180◦ (left). In this case, convergence of the sampling is not achieved in
the allocated number of sampling steps. A failed convergence test triggers an automatic refinement of the
partitioning (right). The parent node ‘1’ is removed and replaced by two children named ‘7’ (−65◦) and
‘8’ (−167◦). The samplings of the associated basis functions converge quickly, as they are now confined
to a single energy minimum each

degree of separation between basis functions. This mechanism leads to increased
convergence rates over the course of the refinement.

Despite several cycles of refinement, the sampling of transition regions (e.g. when
a node is situated on the steep flank of a potential energy barrier) may not lead to
convergence according to the Gelman-Rubin criterion. In these cases, the sampling
has to be discontinued as soon as a sufficient number of data points from the transition
region has been collected.

2.5 Reweighting and cluster analysis

2.5.1 Direct free energy reweighting

The local confined samplings are distributed according to

ρi = φi · ρ

wi
.

If we can calculate the terms w1, . . . , ws we can approximate the correct Boltzmann
distribution by weighting the local histogram of ρi . The correct weighting is given
through

s∑

i=1

wiρi =
s∑

i=1

φiρ = ρ

since the φi ’s sum up to one. The partition of unity assures that the passage between
the overlapping subsets is described correctly. We remark that this partition of the
conformation space is for the purpose of efficiency only and has thus no real physical
or chemical meaning. In order to get the “true” global distribution we thus have to
account for these local restraints, since otherwise spurious effects might occur which
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Fig. 3 Torsion angle distribution of the two torsion angles of n-pentane at 300 K, assembled from 25 indi-
vidual node samplings. Before reweighting, each partial density contributes equally to the joint distribution
(left). This leads to disproportionately high weights of the gauche/trans, trans/gauche and gauche/gauche
conformations. After thermodynamic reweighting, the correct relative weights of the partial densities are
restored, which leads to an improved joint distribution (right)

is illustrated in Fig. 3 for the torsion angle distribution of n-pentane. In order to arrive
at a balanced joint Boltzmann distribution, we need to find the correct wi . This is done
with the free energy difference estimate implemented in the tool zgf_reweight,
based on the approach of Klimm et al. [16]. This approach, which is not dependent on
explicit overlap between the partial densities, is outlined shortly in the following. In
principle, other methods for thermodynamic reweighting, such as the popular weighted
histogram analysis method (WHAM) [17,18], can be employed as well.

1. From each set of states {q(i)
n }n=1,...,N (i) ∈ � representing the partial density

ρi , i = 1, . . . , s, choose a set of reference points {q(i)
r }r=1,...,R(i) . A reference

point is characterized by having a potential energy value within the energy stan-
dard deviation of ρi . More precisely, with 〈U (i)〉 being the mean potential energy
of set q(i),

∥∥∥U (q(i)
r ) − 〈U (i)〉

∥∥∥ ≤
√√√√ 1

N (i)

N (i)∑

n

(
U (q(i)

n ) − 〈U (i)〉
)2

.

2. Approximate the local density of sampling points by evaluating expression Dvoli ,

which counts the number N (i)
near of sampling points that are near, i.e. within a

certain distance voli around each reference point q(i)
r , and compute its inverse

(
Dvoli (q

(i)
r )

)−1 ≈ N (i)

N (i)
near + 1

.

For our purpose, voli is chosen as large as the mean variance of the internal coordi-
nates regarding all sets of states q(i), which is precomputed in a first iteration over
the sampling data. The variance for each set is computed in terms of the distance
function δ2, dependent on the type of the internal coordinates that are involved in
the discretization.

123



790 J Math Chem (2014) 52:781–804

3. Compute the entropy estimate

Si = kB ln

⎛

⎝ 1

R(i)

R(i)∑

l=1

(
Dvoli (q

(i)
r )

)−1

⎞

⎠ ,

the free energy

Gi = 〈U (i)〉 − T · Si ,

and the statistical weights

wi = wi−1 · exp (−β (Gi − Gi−1)) ,

with w1 = 1. The free energy values have to be ordered by size before calculating
the statistical weights. Finally, the statistical weights have to be normalized so that∑s

i=1 wi = 1.

2.5.2 Overlap weight correction

The reweighting method introduced in the previous section works best for well-
separated basis functions. Depending on the given discretization and the nature of
the system under observation, the basis functions in ZIBgridfree can have a more
or less pronounced overlap. We perform a correction of the statistical weights wi in
order to take basis function overlap into account. The degree of overlap between each
pair of basis functions φi and φ j is quantified in terms of the overlap integral matrix
S ∈ R

s×s :

Si j =
∫

�

φi (q)ρ j (q) dq, (14)

which for large numbers is approximated as

Si j = 1

N (i)

N (i)∑

n=1

φ j (q
(i)
n ) · frame_weighti (q

(i)
n ) (15)

from the states {q(i)
n }n=1,...,N (i) that represent the partial density ρi . Note that the

shape of S is influenced by the chosen discretization, in particular by the number of
discretization nodes s. For fine discretizations (large α, cp. Eqs. 6 and 7), S will resem-
ble a diagonal matrix. For very coarse discretizations and small α, it will degenerate
into a full matrix.

The statistical weights w of the basis functions can be derived by solving the
eigenvalue problem w�S = w�, which means that w corresponds to the unique,
positive and normalized left eigenvector of S with regard to its eigenvalue λ1 = 1
[11]. This eigenvector-based approach is not well-conditioned and highly dependent on
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sufficient sampling in the overlap regions between the basis functions [19]. In order to
benefit from the advantages of both direct free energy reweighting and the eigenvector-
based approach, we start a number of power iteration steps from the original weights
w with the stochastic matrix, until the corrected weights (again denoted as w) are
convergent.

The row sums of the matrix S do not correspond to the corrected weights w. Accord-
ing to the method of Sinkhorn[20], an iterative rescaling of the row sums to meet w,
followed by a symmetrization of S, leads to a corrected overlap integral matrix that is
consistent with the precomputed statistical weights.

2.5.3 Metastability analysis with PCCA+

From the chemical perspective, metastable subsets correspond to the main confor-
mations of the underlying molecular system. In the presence of metastable states,
any matrix describing the transition behavior of the system (including the matrix S)
exhibits a virtual block-diagonal structure, i.e. there exists a permutation of indices so
that the metastable subsets of the system are represented by (more or less) quadratic
blocks along the diagonal of the matrix (see Fig. 4).

Every block in this matrix is associated with an eigenvector of the matrix whose
eigenvalue is almost one. The set of the eigenvalues in the vicinity of one is denoted
as the Perron cluster, and the size of this set corresponds to the number of chemi-
cal conformations nC . The linear combinations of the eigenvectors associated with
the eigenvalues of the Perron cluster contain, for each basis function φi , the degree
of membership with regard to each of the nC conformations. Robust Perron cluster
analysis (PCCA+) [21,22] is used to find the permutation yielding the block-diagonal
structure, and hence the matrix of linear combination factors χdisc (cp. Eq. 4). The
result is the matrix χ ∈ R

s×nC , where the entry χ(i, j) ∈ [0, 1] denotes the degree of
membership of basis function φi with regard to the j th metastable subset.

Using the weight vector w containing the thermodynamic weights of the basis
functions φi , it is then possible to calculate the weights w̃ of the conformations as
w̃ = χ�w.

3 Molecular simulation details

All molecular simulations were performed with GROMACS, versions 4.5.4 and 4.5.5
(single precision, unless stated differently). All molecules were parametrized for the

Fig. 4 Schematic of a
(permutated) transition matrix in
the presence of metastable
subsets. Within the three
conformations c1 to c3, states
are mixing quickly. By contrast,
transitions from conformation to
conformation (light gray
off-diagonal area) are rare events
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Amber-99SB force field [23]. Residues not already included in the standard force
field were prepared using the software ACPYPE [24] and Antechamber [25,26]
from AmberTools [27], with charges calculated by the AM1-BCC method [28,29].

For the vacuum simulations (n-pentane), van der Waals and Coulomb interactions
were computed without cut-off (all vs. all). For the explicit solvent alanine dipeptide
simulations, the TIP4P-Ew water model [30,31] was used. The solute was placed
in a rhombic dodecahedron periodic box of 4.0 nm side length. The host-guest sys-
tem structure in non-complexed form (with the guest molecule displaced by 1.5 nm)
was placed in a cubic periodic box of 6.5 nm side length and solvated in a 10:1
mixture of chloroform and methanol. The force field parameters for chloroform and
methanol were obtained from the GROMACS Molecule & Liquid Database at URL
http://virtualchemistry.org/gmld.php [32,33]. To neutralize the overall charge, a sin-
gle counter ion was added to the simulation box. In both cases, a twin range cut-off of
1.0/1.4 nm for van der Waals interactions was applied and the smooth particle mesh
Ewald algorithm [34] was used for Coulomb interactions, with a switching distance
of 1.0 nm.

In order to generate the N V T ensemble of states for the desired temperature
of 298/300 K, either the velocity-rescaling thermostat [35] in combination with
an MD leap-frog integrator, or a Langevin-type stochastic dynamics [36] integra-
tor was used. For the explicit solvent N pT simulations (alanine dipeptide), the
velocity-rescaling thermostat/stochastic dynamics integrator was supplemented by the
Parrinello-Rahman barostat [37,38], with a reference pressure of 1 bar. For the host-
guest system transition node samplings, neither thermostat nor barostat were applied
in order to realize an N V E ensemble setup. The integration step was set to 1 fs for
all simulations. The error threshold for the symmetrization of the S matrices was set
to 10−2 for n-pentane, to 10−4 for alanine dipeptide, and to 10−3 for the host-guest
system.

4 Results and discussion

4.1 Pentane in vacuo

In order to evaluate basic properties of the algorithm, vacuum simulations of n-pentane,
a small alkane with five carbon atoms (see Fig. 5), were conducted. The two backbone

Fig. 5 Three-dimensional
representation of n-pentane. The
two backbone torsion angles
chosen as internal coordinates
are highlighted
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Table 1 Conformational weights of n-pentane at 300 K, derived from a hybrid Monte Carlo (HMC) sim-
ulation using the Merck molecular force field [40]

c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.473 0.120 0.132 0.117 0.132 0.013 0.012 <0.005 <0.005

tr(ans): ≈ ±180◦, g(auche)+: ≈ +60◦, g(auche)−: ≈ −60◦. Torsion angles are given on the scale
[−180, . . . , 180]

torsion angles of n-pentane were chosen as internal coordinates for the discretization.
With regard to these internal coordinates, n-pentane has nine main conformations,
separated by distinct energy barriers. The presampling of conformational space was
obtained in terms of a 100 ns MD simulation at a very high (and physically unrealistic)
temperature of 1,000 K. Reference weights for the conformations of n-pentane were
taken from the literature [39] (see Table 1).

4.1.1 Stability regarding randomness of impulse and discretization

In order to monitor the impact of choosing a different discretization (placing of nodes
in conformational space) on the sampling outcome, three experiments with ten runs of
ZIBgridfree each were conducted: a) Equally placed nodes, but random MD starting
impulse, b) randomly placed nodes, but equal MD starting impulse, and c) randomly
placed nodes and random MD starting impulse. All runs were conducted with 20
discretization nodes and a minimum sampling time of 100 ps per node, leading to a
mean overall sampling time per run of 2.8 ns. The results are shown in Fig. 6, left.

Randomizing the MD starting impulse leads to a maximum standard deviation of
0.025 regarding the weight of the most dominant conformation, tr/tr. Randomizing
the node placement by picking different initial seeds for the k-means algorithm leads
to a maximum standard deviation of 0.031 for conformation tr/tr. When both MD

Fig. 6 Conformational weights of n-pentane. Error bars indicate the standard deviation w.r.t. 10 runs.
Deviation from the literature values is indicated as intra-bar plot. Left 20 nodes, 100 ps minimum sampling
time per node, with equally placed nodes, random MD starting impulse (dark gray), randomly placed nodes,
equal MD starting impulse (gray), and randomly placed nodes and random MD starting impulse (light gray).
Right 100 ps minimum sampling time per node, 10, 20, 30 and 40 nodes (dark gray to light gray), random
MD starting impulse, random node placement
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starting impulse and node placement are randomized at the same time (mimicking a
standard sampling setup), the maximum standard deviation is slightly smaller (0.23
for conformation tr/tr), which indicates that the uncertainty regarding both choices is
not additive.

4.1.2 Stability regarding fineness of discretization

Similar simulations (random MD starting impulse, random node placement, 100 ps
minimum sampling time per node) were performed with varying number of sampling
nodes in order to evaluate the impact of the fineness of the discretization. For this
experiment, automatic refinement of the discretization was switched off. The results
are shown in Fig. 6, right. When only ten discretization nodes are used (only one more
than the expected number of conformations), the error becomes very large (0.128 for
conformation tr/tr), and, despite a relatively large mean overall sampling time of 3.2
ns per run, the rare conformations g+/g- and g-/g+ are not identified at all. For 20, 30
and 40 discretization nodes (mean overall sampling times 2.79, 4.45 and 5.5 ns per
run), the results are comparable, but do not improve visibly with increasing fineness
of the discretization.

4.1.3 Stability regarding sampling time

Finally, it was looked into how the sampling time per node determines the quality of
the results. The outcome is shown in Fig. 7. A very short minimum sampling time of 10

Fig. 7 Conformational weights of n-pentane. Error bars indicate the standard deviation w.r.t. 10 runs.
Deviation from the literature values is indicated as sub-bar plot. 25 nodes, with 10, 100 and 1,000 ps
minimum sampling time per node (dark gray to light gray), random MD starting impulse, random node
placement
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Table 2 Averaged conformational weights of n-pentane at 300 K, derived from ten runs of ZIBgridfree
using the Amber-99SB force field

c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.486 0.113 0.113 0.116 0.110 0.027 0.029 0.003 0.004

Fig. 8 Three-dimensional
representation of alanine
dipeptide (ACE-ALA-NME, i.e.
terminally blocked alanine). The
two backbone torsion angles �

and � chosen as internal
coordinates are highlighted

ps per node produces a large error (0.099 for conformation tr/tr), but, given the mean
overall sampling time of only 365 ps per run, the averaged conformational weights
are acceptable. With increasing sampling time per node, the error can be significantly
reduced. For a minimum sampling time of 1,000 ps per node (mean overall sampling
time 26.7 ns), the maximum standard deviation (conformation tr/tr) is reduced to 0.016,
and below one percent for all other conformations. One can conclude that a rough
estimate of the conformational weights can be obtained at a very low cost, whereas
precise results have to be paid for with thorough sampling of the partial densities.

The results show a perceivable deviation w.r.t. to the conformational weights found
in the literature (cp. Table 1), which most likely can be attributed to the use of a
different force field and (possibly) the different dynamics for propagating the system.
For comparison, the conformational weights obtained from ZIBgridfree with 25 nodes
and 1,000 ps minimum sampling time per node, averaged over ten runs, are given in
Table 2.

4.2 Alanine dipeptide in water

As a second example, the conformations of alanine dipeptide in explicit TIP4P-Ew
water were studied. Alanine dipeptide is the most basic (or “minimal”) polypeptide and
serves as a popular test case for evaluating biological force fields. The two backbone
torsion angles � and � span the relevant conformational space of alanine dipeptide,
and were hence chosen as internal coordinates for the discretization. With regard
to these internal coordinates, alanine dipeptide has six main conformations, which
however are not as well-separated as in the previous example, n-pentane. Obtaining
correct conformational weights from explicit solvent simulations is more difficult
compared to vacuum or implicit solvent settings, as the dynamics of a solvated system
is decelerated, while the computational cost of producing sufficient sampling data
multiplies (Fig. 8).
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Table 3 Conformational weights of alanine dipeptide at 300 K in the N V T and in the N pT ensemble,
derived from two 200 ns MD simulations using the Amber-99SB force field

c C5 PI I αR αP αL Cα
7

N V T w̃c 0.2696 0.4043 0.1745 0.1369 0.0136 0.0010

N pT w̃c 0.2794 0.4363 0.1563 0.1190 0.0070 0.0020

C5 ≈ 143◦/ − 158◦, PI I ≈ 70◦/ − 158◦, αR ≈ 70◦/11◦, αP ≈ 136◦/ − 11◦, αL ≈ 55◦/ − 40◦, and Cα
7≈ −60◦/ ± 180◦. Torsion angles are given on the scale [−180, . . . , 180]. Conformation labels taken from

Chodera et al. [41]

Reference weights for the conformations of alanine dipetide at 300 K in the N V T
and in the N pT ensemble were obtained from two 200 ns MD simulations (see Table 3).

Explicitly modeled water also complicates the presampling of conformational
space: High (or elevated) temperature presampling is possibly only to a certain
extent, and requires a re-equilibration of the simulation boxes before the partial den-
sities can be sampled at the target temperature. In principle, discretization nodes
can also be picked from a vacuum or implicit solvent trajectory of the molecule of
interest, to be put in explicit solvent only before the sampling of partial densities
with ZIBgridfree is commenced (implemented in the tools zgf_solvate_nodes
and zgf_genion). Again, another cycle of energy minimization and simulation
box equilibration is needed before usable sampling data can be collected. For this
example, the presampling consisted of a 100 ns MD trajectory at the target tem-
perature of 300 K, which means that re-equilibration after node selection was not
necessary.

4.2.1 Stability regarding sampling time

First, it was looked into how the sampling time per node determines the quality of
the results using random MD starting impulse and random node placement in an
N V T ensemble. The outcome is shown in Fig. 9. In comparison to the (vacuum)
n-pentane example, a longer minimum sampling time per node is required in order
to yield acceptable results. For a very short minimum sampling time of 10 ps per
node, the results were not interpretable due to the large error (data not shown). A
minimum sampling time of 100 ps per node (mean overall sampling time 2.4 ns)
produces large errors of around 15 % in terms of standard deviation for the three
largest conformations PI I , C5 and αR . When the minimum sampling time per node
is increased to 500 ps (mean overall sampling time 7.7 ns), the error can be reduced
below 6 % for all conformations (largest error is 0.0581 for conformation PI I ). Finally,
with a minimum sampling time of 1,000 ps per node (mean overall sampling time 15
ns), the error is in the range of 5 %, and mainly below (largest error is 0.0533 for
conformation PI I ).

An auxiliary trial with a minimum sampling time of 1000 ps per node (mean overall
sampling time 15.56 ns) using a double precision version of GROMACS did not lead
to a further decrease in standard deviation, contrary to what might have been expected
from an increase in precision of coordinates and observables.
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Fig. 9 Conformational weights of alanine dipeptide. Error bars indicate the standard deviation w.r.t. 10
runs. Deviation from the reference values is indicated as sub-bar plot. 15 nodes, with 100, 500 and 1,000 ps
minimum sampling time per node (dark gray to light gray), including an auxiliary 1,000 ps double precision
trial, random MD starting impulse, random node placement

4.2.2 Stability regarding choice of dynamics

Second, similar simulations (random MD starting impulse, 15 randomly placed nodes,
1000 ps minimum sampling time per node) were performed while exchanging the
common MD integrator with a stochastic dynamics (SD) integrator. Both integrators
were compared in the context of an N V T and an N pT ensemble, the latter realized
by using a Parrinello-Rahman barostat. All trial runs were conducted with a double
precision version of GROMACS. The results are shown in Fig. 10. In both N V T and
N pT ensemble, the SD integrator delivers better results with regard to the standard
deviation over ten runs. In the N V T ensemble, the largest error obtained with the SD
integrator is 3.618 % (conformation PI I ), compared to 5.86 % when the MD integrator
is used (conformation αR). This gap becomes somewhat closer in the N pT ensemble,
where the largest error obtained with the SD integrator is 5.35 %, compared to 6.3 %
when the MD integrator is used (both w.r.t. conformation αR).

The chosen dynamics also has an impact on the mean conformational weights. When
the SD integrator is used, the largest conformation, PI I is sampled less dominant than
with the MD integrator (N V T : 36.18 % compared to 39.68 %, and N pT : 39.02 %
compared to 44.93 %). Instead, the conformational weight is distributed more equally
over the minor conformations αR, αP and αL .

The results show an acceptable agreement with the reference weights that were
extracted from the 200 ns MD trajectory for all runs using 500 ps or more minimum
sampling time per node, at least for the runs conducted with the MD integrator (i.e.
the same integrator that was used for the long-time trajectories used as reference).
Long-time data from the SD integrator is not available, but it can be expected to
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Fig. 10 Conformational weights of alanine dipeptide. Error bars indicate the standard deviation w.r.t. 10
runs. Deviation from the reference values is indicated as sub-bar plot. 15 nodes, 1,000 ps minimum sampling
time per node, random node placement, with MD integrator (N V T ), SD integrator (N V T ), MD integrator
(N pT ), and SD integrator (N pT ), dark gray to light gray

Table 4 Averaged conformational weights of alanine dipeptide at 300 K in the N V T and in the N pT
ensemble, derived from ten runs of ZIBgridfree using the Amber-99SB force field (MD integrator, double
precision GROMACS)

c C5 PI I αR αP αL Cα
7

N V T w̃c 0.2606 0.3968 0.2112 0.1244 0.0067 0.0003

N pT w̃c 0.2871 0.4493 0.1586 0.1035 0.0015 0.0001

deliver a slightly different distribution. In general, the largest deviation is found for
theαR conformation: ZIBgridfree tends to overweightαR by about 4 %, a weight that is
mostly drawn from the αP , and partly from the αL conformation. As the conformations
of alanine dipeptide tend to have notable overlapping regions (as opposed to the well-
separated conformations of n-pentane), the error might not only be due to insufficient
sampling, but also to imperfect clustering of certain states in transient regions. For
comparison, the conformational weights in the N V T and the N pT ensemble, obtained
from ZIBgridfree with 15 nodes and 1000 ps minimum sampling time per node and
averaged over ten runs, are given in Table 4.

4.3 Host-guest binding process in explicit solvent

In order to give a proof of concept for a different application of the algorithm, the
analysis of a small crown ether-ammonium host-guest binding process is presented in
the following. The system consists of an 18-crown-6 dimer host molecule (C6), and
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Fig. 11 Left Host guest system C6-(MonoG1+H)-OTs after 2 ns equilibration of the solvent mix-
ture (10:1 chloroform-methanol) in the position-restrained unbound state at 298 K (chloroform = gray,
methanol = purple). Polar clusters of methanol molecules are clearly visible. Right Three distances between
ammonium moiety and binding site form the internal coordinates for the system (Color figure online)

an ammonium ion guest molecule incorporating a short flexible tail (MonoG1+H).
The thermodynamics of the formation of complex (MonoG1+H)•C6 in a mixture of
chloroform and methanol and in the presence of tosylate counter ions (denoted as OTs)
could be characterized recently, along with an analoguous bivalent system [42].

The presampling for this system was obtained by free diffusion MD simulations
involving the complete explicit solvent and counter ion setup. One out of five 10 ns MD
simulations starting from the unbound state (Fig. 11, left) with about 1.5 nm separation
between host and guest molecule captured a binding event. The relatively low yield
can be explained by the fact that (i) both host and guest molecule are rather small and
mobile and therefore subject to rapid diffusion in the box and (ii) the complexation of
host and guest is hindered by the counter ion associating with the ammonium moiety,
obscuring the interaction site. Consequently, not every close contact between host
and guest immediately induces complex formation. The trajectory which captured
the binding event was prolonged to a total of 100 ns without showing indications for
complex dissociation.

4.3.1 Discretization and metastability analysis

The conformational space discretization was based on a set of internal coordinates
consisting of three strongly correlated distances between ammonium moiety and 18-
crown-6 ring (Fig. 11, right). In order to remove the abundance of unbound states
not related to the binding process from the presampling data, states with distances
of more than 1.8 nm distance between the interaction sites were discarded. A total
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Fig. 12 Left Mean potential energy (gray) and corrected discretization node weights (blue) for the 16 dis-
cretization nodes of system C6-(MonoG1+H)-OTs. Right Overlap integral matrix S with 16 discretization
nodes. Large matrix entries (red, yellow) indicate no or only minor overlap with neighboring discretization
nodes and represent isolated and/or stable regions. Discretization nodes with many off-diagonal entries
(blueish) exhibit a significant overlap with their neighborhood and thus mark transient regions (Color figure
online)

number of 16 discretization nodes was placed equidistantly in the remaining part of
conformational space. For each discretization node, 5 × 500 ps of MD in the N V T
ensemble were simulated at a temperature of 298 K, with each 500 ps run starting at
the initial position of the discretization node using a random starting impulse vector,
leading to a joint sampling time of 40 ns for the complete discretization.

The thermodynamic reweighting of the partial distributions sampled for the 16
discretization nodes documents a decrease in potential energy that is directly related
to the distance of the host to the guest molecule (Fig. 12, left). A notable improvement
in the interaction energy sets in with node 11 at an approximate host-guest distance
of 7.5 Å, and culminates in the bound state (nodes 14, 15 and 16). While nodes 1–
10 have similar (and low) thermodynamic weights, nodes 11–16, covering host-guest
distances of 7.5 Å and nearer, represent the largest share of the distribution.

The S matrix of the discretization (Fig. 12, right) exhibits an isolated unbound state
represented by node 1, an articulate “block” for the bound state (nodes 14, 15 and 16
in the lower right corner) and a large transition region in between. Accordingly, the
clustering with PCCA+ identifies three metastable states, namely the unbound state
(UB) with a weight of 4.58 %, the almost bound state (AB) with a weight of 9.04 %,
and the bound state (SB) with a weight of 86.38 % (Fig. 13). State UB is detached
from the rest of the system except for a small degree of communication involving
nodes 2 and 3 that leads into state AB. State AB, in turn, exhibits a fluent transition
into state SB. Nodes 6, 9, and in particular 10 mark the transition region between the
two clusters AB and SB. Nodes 14, 15 and 16 have the highest membership w.r.t. to
state SB, and represent the proper bound state.

In order to look into the transition behavior on the level of the metastable states,
additional unrestrained short-time MD simulations in the N V E ensemble were con-
ducted. The unrestrained “transition nodes” (as opposed to the discretization nodes
used for sampling the stationary distribution) were placed in regions of conforma-
tional space that mark interfaces between the different metastable states, and thus are
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Fig. 13 The χ� matrix (top) of system C6-(MonoG1+H)-OTs groups the 16 discretization nodes into
three metastable states: The unbound state (UB, left), the almost bound state (AB, center), and the singly
bound state (SB, right). The colors in the χ� matrix indicate the degree of membership of a discretization
node to a given metastable state: dark red = highest degree of membership, dark blue = no membership.
Nodes 6, 9 and 10 represent transition regions that belong almost evenly to the two metastable states AB
and SB (Color figure online)

prone to reveal the associated transition behavior more readily than simulations that
are started exactly within the center of a metastable region.

Pc(τ ) =
⎛

⎝

UB AB SB

UB 0.9868 0.0132 0.

AB 0.0489 0.7584 0.1928
SB 0.0002 0.0029 0.9969

⎞

⎠, with τ = 100 ps (16)

Using a total of 45 transition nodes started for ten runs of 100 ps each using a
random starting impulse (45 ns additional sampling time), the transition probability
matrix Pc(τ ) is obtained (Matrix 16). Within the short time span of 100 ps, the system
has a very high probability to remain in either state UB or state SB. Given the system
is in state AB, it is more likely to make the transition into the bound state (≈19 %)
than into the unbound state (≈5 %).

5 Conclusion

As far as the limited number of test cases allows, it was shown that algorithm and
software perform reasonably well in determining the conformational weights and inter-
conformational transition probabilities of small molecular systems in both vacuum and
explicit solvent. The performance of the method in comparison to other approaches
was not evaluated explicitly, but, given that a similar algorithmic framework is used,
should be in the order of available umbrella sampling approaches. Due to the fact that
ZIBgridfree is dependent on the availability of a presampling of conformational space
from which discretization nodes can be selected, the cost of obtaining the presampling
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would have to be added to the overall performance balance. The cost of generating an
adequate presampling is dependent on the system in question. For instance, a series
of docking poses of a small molecule in a protein binding pocket would also serve as
a valid starting point for using ZIBgridfree.

Given the efficiency of current MD code in generating even very long trajectories,
the need for a relatively complex algorithm like ZIBgridfree can be questioned. We
see the advantage of using ZIBgridfree mainly in the more directed generation of
sampling data in transient regions of conformational space (reducing the amount of
redundant sampling data) and the possibility to add another level of parallelization
to the sampling process, namely parallel sampling of the discretization nodes (i.e.
conformational space regions), which can be used to complement the parallel force
field evaluation in order to increase the overall sampling efficiency. Furthermore,
the use of collective variables (i.e. internal coordinates) and the integrated clustering
approach lead to a level of abstraction that significantly facilitates the analysis of the
sampling data, the identification of relevant events and their biological or chemical
interpretation.

In upcoming work, we would like to improve the usability of software and algo-
rithm. In particular, we would like to eliminate certain discretization parameters that
currently have to be set by the user. Ideally, for a given system, an optimal number of
discretization nodes is proposed beforehand. The ZIBgridfree scheme is also a suitable
discretization of the infinitesimal generator described in [43]. Further invesigation in
this direction will also be done in future.

6 Supporting information available

The source code of ZIBgridfree is available at https://github.com/CMD-at-ZIB/
ZIBMolPy.
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